Matches in Nanopublications for { ?s <https://w3id.org/aopdo/hasApplicabilityDomain> ?o ?g. }
Showing items 1 to 1 of
1
with 100 items per page.
- KeyEvent hasApplicabilityDomain "AChE is present in all life stages of both vertebrate and invertebrate species (Lu et al 2012). Acetylcholinesterase associated with cholinergic responses in most insects is coded by the ace1 gene and in vertebrates by the ace gene (Lu et al 2012; Taylor 2011. Plants have AChE but it is most likely involved in regulation of membrane permeability and the ability of a leaf to unroll (Tretyn and Kendrick 1991). The primary amino acid sequence of the AChE enzyme is relatively well conserved across vertebrate and invertebrate species, suggesting that chemicals are likely to interact with the enzyme in a similar manner across a wide range of animals. From the sequence similarity analyses, the taxonomic domain of applicability of this MIE likely includes species belonging to many lineages, including branchiopoda (crustaceans, e.g., daphnids), insecta (insects), arachnida (arachnids, e.g., spiders, ticks, scorpions), cephalopoda (molluscans, e.g., octopods, squids), lepidosauria (reptiles, e.g., snakes, lizards), chondrichthyes (cartilaginous fishes, e.g., sharks), amphibia (amphibians), mammalian (mammals), aves (birds), actinopterygii (bony fish), ascidiacea (sac-like marine invertebrates), trematoda (platyhelminthes, e.g., flatworms), and gastropoda (gastropods, e.g., snails and slugs) Species within these taxonomic lineages and others are predicted to be intrinsically susceptible to chemicals that target functional orthologs of the daphnid AChE (Russom, 2014). Advanced computational approaches such as crystal structures of the enzyme and transcriptomics have provided empirical evidence of the enzyme structure, relevant binding sites, and function across species (Lushington et al., 2006; Lu et al., 2012; Wallace 1992). Studies have found that AChE activity increases as the organism develops. Prakesh and Kaur 1982 looked at AChE inhibition across three insect species; controls and those exposed to DDVP. They saw little difference in the larval stages but did see increased inhibition in pupal and adult stages (greatest inhibition). Karanth and Pope 2003 looked at AChE and acetylcholine synthesis in rat striatum in controls and animals exposed to 0.3 and 1 times the maximum tolerated dose. Although these doses are below the lethal concentrations and they mention that not observed cholinergic responses were observed, they do provide differences related to life stages of the rodents. Grue et al 1981 present baseline (no toxicity exposure) in wild starlings (both sexes) of brain cholinesterase and found activity increased as birds aged from 1-20 days until it reached a steady state at adulthood. A study with Red Flour Beetle found that the gene associated with cholinergic functions (Ace1) was expressed at all life-stages, with increases as the organism developed from egg to larva to pupa to adult. (Lu et al., 2012 cited in Russom et al 2014.) In mammals and birds, studies have determined that skeletal muscles of immature birds and mammals contain both butyrylcholinesterase and AChE, with butyrylcholinesterase decreasing and AChE increasing as the animal develops (Tsim et al. 1988; Berman et al, 1987). Another study found that changes in AChE within the developing pig brain were dependent on the area of the brain, and life stage of the animal, with significant decreases in activity within the pons and hippocampus from birth to 36 months, and no significant change in activity in the cerebellum, where activity increased up to four months of age, leveling off thereafter (Adejumo and Egbunike, 2004)." assertion.