Matches in Nanopublications for { ?s ?p ?o <https://w3id.org/np/RAIc5UVhIIZQ4jv_cOpsJB0Ch9bqdfWkVhj2N0vgu8L34/assertion>. }
- mailto:environmental.ds.book@gmail.com type Agent assertion.
- 0000-0002-8763-1643 type Agent assertion.
- b0a8864e-415d-42e3-972f-bb66c6d6a4d9 mainEntity "Jupyter Notebook" assertion.
- b0a8864e-415d-42e3-972f-bb66c6d6a4d9 wasDerivedFrom ac327c3a-5264-40a2-8c6e-1e8d7c4b37ef assertion.
- 2919 description "" assertion.
- 6384 description "" assertion.
- environment.yml description "Conda environment when user want to have the same libraries installed without concerns of package versions" assertion.
- notebook.ipynb description "Jupyter Notebook hosted by the Environmental Data Science Book" assertion.
- polar-modelling-icenet.html description "Rendered version of the Jupyter Notebook hosted by the Environmental Data Science Book" assertion.
- s41467-021-25257-4 description "Related publication of the modelling presented in the Jupyter notebook" assertion.
- conda-osx-64.lock description "Lock conda file for osx-64 OS of the Jupyter notebook hosted by the Environmental Data Science Book" assertion.
- conda-linux-64.lock description "Lock conda file for linux-64 OS of the Jupyter notebook hosted by the Environmental Data Science Book" assertion.
- zenodo.5516869 description "Contains input Dataset for IceNet's demo notebook used in the Jupyter notebook of Sea ice forecasting using IceNet" assertion.
- 71820e7d-c628-4e32-969f-464b7efb187c description "Contains input Forecasts, neural networks, and results from the paper: 'Seasonal Arctic sea ice forecasting with probabilistic deep learning' used in the Jupyter notebook of Sea ice forecasting using IceNet" assertion.
- zenodo.6410246 description "Contains outputs, (table and figures), generated in the Jupyter notebook of Sea ice forecasting using IceNet" assertion.
- b0a8864e-415d-42e3-972f-bb66c6d6a4d9 description "The research object refers to the Sea ice forecasting using IceNet notebook published in the Environmental Data Science book. Modelling approach IceNet is a probabilistic, deep learning sea ice forecasting system. The model, an ensemble of U-Net networks, learns how sea ice changes from climate simulations and observational data to forecast up to 6 months of monthly-averaged sea ice concentration maps at 25 km resolution. IceNet advances the range of accurate sea ice forecasts, outperforming a state-of-the-art dynamical model in seasonal forecasts of summer sea ice, particularly for extreme sea ice events. IceNet was implemented in Python 3.7 using TensorFlow v2.2.0. Further details can be found in the Nature Communications paper Seasonal Arctic sea ice forecasting with probabilistic deep learning." assertion.
- 3b853f3d-6613-4dd1-bcf8-d70e397586a7 description "Figure showing the 2 meter temperature from ECMWF ERA5 (monthly mean September to November 2019)" assertion.
- dbcef63e-b902-49d4-8e78-d2623962fd74 description "Derivative work created from forked Research Object. The Jupyter Notebook has been updated" assertion.
- c6c163c4-1098-4532-a1f1-06698d37b17c contentSize "344731" assertion.
- 3b853f3d-6613-4dd1-bcf8-d70e397586a7 contentSize "659726" assertion.
- b0a8864e-415d-42e3-972f-bb66c6d6a4d9 contentSize "12846411" assertion.
- dbcef63e-b902-49d4-8e78-d2623962fd74 contentSize "20240021" assertion.
- b0a8864e-415d-42e3-972f-bb66c6d6a4d9 contributor tom-andersson assertion.
- b0a8864e-415d-42e3-972f-bb66c6d6a4d9 contributor nbarlowATI assertion.
- b0a8864e-415d-42e3-972f-bb66c6d6a4d9 contributor 0000-0002-8763-1643 assertion.
- b0a8864e-415d-42e3-972f-bb66c6d6a4d9 dateCreated "2022-04-03 22:37:45.977506+00:00" assertion.
- c6c163c4-1098-4532-a1f1-06698d37b17c dateCreated "2022-04-03 22:38:08.092594+00:00" assertion.
- notebook.ipynb dateCreated "2022-04-03 22:38:13.405158+00:00" assertion.
- 71820e7d-c628-4e32-969f-464b7efb187c dateCreated "2022-04-03 22:38:14.669821+00:00" assertion.
- zenodo.5516869 dateCreated "2022-04-03 22:38:16.031702+00:00" assertion.
- zenodo.6410246 dateCreated "2022-04-03 22:38:17.386248+00:00" assertion.
- s41467-021-25257-4 dateCreated "2022-04-03 22:38:18.897063+00:00" assertion.
- polar-modelling-icenet.html dateCreated "2022-04-03 22:38:31.388108+00:00" assertion.
- conda-linux-64.lock dateCreated "2022-04-03 22:38:32.938456+00:00" assertion.
- conda-osx-64.lock dateCreated "2022-04-03 22:38:34.714518+00:00" assertion.
- environment.yml dateCreated "2022-04-03 22:38:36.253117+00:00" assertion.
- 3b853f3d-6613-4dd1-bcf8-d70e397586a7 dateCreated "2022-12-07 15:21:40.547786+00:00" assertion.
- dbcef63e-b902-49d4-8e78-d2623962fd74 dateCreated "2022-12-07 15:23:15.811856+00:00" assertion.
- dbcef63e-b902-49d4-8e78-d2623962fd74 softwareRequirements 5012f687-b6e6-4fd2-a55a-4911cff98390 assertion.
- notebook.ipynb softwareRequirements 579fe096-4af8-4203-8260-feaf7677c30a assertion.
- b0a8864e-415d-42e3-972f-bb66c6d6a4d9 creation_mode "MANUAL" assertion.
- mailto:annefou@geo.uio.no orcid "0000-0002-1784-2920" assertion.
- 0000-0002-8763-1643 orcid "0000-0002-8763-1643" assertion.
- b0a8864e-415d-42e3-972f-bb66c6d6a4d9 cite-as "Alejandro Coca-Castro, Anne Foilloux, Tom Andersson, Nick Barlow, and Jean Iaquinta. "Learn about IceNet, a probabilistic Deep learning for seasonal sea-ice forecasts." ROHub. Apr 03 ,2022. https://w3id.org/ro-id/b0a8864e-415d-42e3-972f-bb66c6d6a4d9." assertion.
- b0a8864e-415d-42e3-972f-bb66c6d6a4d9 forkedAtTime "2022-12-07 14:10:33.478638+00:00" assertion.
- b0a8864e-415d-42e3-972f-bb66c6d6a4d9 forkedBy mailto:annefou@geo.uio.no assertion.
- 5949e00c-1044-46f8-a0cc-28025edd538e normScore "100.0" assertion.
- 7474bad0-4e56-4f01-b07a-f968b50bca54 normScore "100.0" assertion.
- 90519e78-e2c4-4e6b-96b7-381b979ea119 normScore "100.0" assertion.
- fe262906-28cc-4213-9738-8b9610e46f3d normScore "100.0" assertion.
- 6c60ba3a-f802-4f9c-9d92-4a433dc99bc0 normScore "6.832298136645963" assertion.
- 908e35a7-8fb8-42d0-8b87-49dff30a0aea normScore "6.666666666666667" assertion.
- d5ce92b5-3a5e-4efb-80eb-bbe3a1373642 normScore "10.16042780748663" assertion.
- 17fc34a9-15f8-4ede-bbb1-f98a3574da0c normScore "17.77777777777778" assertion.
- 8b39896f-7dc5-44ea-9203-567178437eef normScore "19.78609625668449" assertion.
- f9d77fd3-14a8-4a03-a85a-0a62473dbff1 normScore "19.78609625668449" assertion.
- 2bd485bf-9f56-46c4-b123-5504b8ce562e normScore "21.390374331550802" assertion.
- fc1fc431-254c-4201-b131-0ebdbb738db3 normScore "23.80952380952381" assertion.
- 461dc6f0-a899-472c-bb3c-c8eb749a40fa normScore "28.87700534759358" assertion.
- 3ac1396a-d055-4660-8fc4-6319f4434ed2 normScore "29.999999999999996" assertion.
- 9b6704a6-b0f5-453e-b27c-be54662d6230 normScore "31.36645962732919" assertion.
- 99d00521-c312-4d25-a754-4796e6d56337 normScore "31.661442006269596" assertion.
- 06ceded6-7b99-488f-8d1f-b33d265f142a normScore "32.13166144200627" assertion.
- 676a7fdc-a358-4212-ab1e-b3bde19bcd73 normScore "32.29813664596273" assertion.
- c9654059-04b6-46fb-a302-a40076f44cac normScore "36.20689655172414" assertion.
- 79f2068e-fb81-4e9e-8fb1-7c38e7ee94e0 normScore "4.813664596273291" assertion.
- 226d0542-cabd-4fc3-9cf2-7b947fa542ac normScore "46.666666666666664" assertion.
- b33a3332-21c5-4b82-bdd0-8db9bf2bbfc0 normScore "5.745341614906832" assertion.
- 25c13a03-c62c-45be-b710-c91f5c054bf6 normScore "5.900621118012422" assertion.
- b746c5bb-7e48-4c16-8430-09aea7041bf0 normScore "53.333333333333336" assertion.
- 93961fcb-5df7-4627-835d-9d7f8afa4803 normScore "6.190476190476191" assertion.
- 9f69e528-e705-4083-a5c9-0c36e7a863d0 normScore "6.349206349206349" assertion.
- 287e6f0d-fcd9-4e6f-8e4a-ab34f442573a normScore "6.366459627329191" assertion.
- d9659f63-bcc3-4785-b78a-edd25f518c8d normScore "6.6770186335403725" assertion.
- 127bcd6a-0c64-48dd-a923-f3190bbe8568 normScore "9.206349206349206" assertion.
- a17f760e-77bf-4c45-a325-586d6eddee49 path "Weather" assertion.
- 49758e1b-802b-4a7a-acee-b3c09560b075 path "Arts, culture and entertainment/Arts and entertainment/Literature" assertion.
- 6ed2c9f7-d6b7-4cad-aee6-1036f84bd5f4 path "Economy, business and finance/Economic sector/Media/Book industry" assertion.
- 8b69bf8e-f9e5-4e14-88b8-9c54ea22bb1b path "Weather/Weather forecast" assertion.
- 3a81f62f-62f6-4909-921e-7d3461919569 path "Science and technology/Social sciences/Philosophy" assertion.
- 2bd485bf-9f56-46c4-b123-5504b8ce562e score "12.0" assertion.
- fc1fc431-254c-4201-b131-0ebdbb738db3 score "15.0" assertion.
- b746c5bb-7e48-4c16-8430-09aea7041bf0 score "0.8" assertion.
- b33a3332-21c5-4b82-bdd0-8db9bf2bbfc0 score "3.7" assertion.
- d5ce92b5-3a5e-4efb-80eb-bbe3a1373642 score "5.7" assertion.
- 127bcd6a-0c64-48dd-a923-f3190bbe8568 score "5.8" assertion.
- 17fc34a9-15f8-4ede-bbb1-f98a3574da0c score "11.2" assertion.
- 25c13a03-c62c-45be-b710-c91f5c054bf6 score "3.8" assertion.
- 93961fcb-5df7-4627-835d-9d7f8afa4803 score "3.9" assertion.
- 9f69e528-e705-4083-a5c9-0c36e7a863d0 score "4.0" assertion.
- d9659f63-bcc3-4785-b78a-edd25f518c8d score "4.3" assertion.
- 6c60ba3a-f802-4f9c-9d92-4a433dc99bc0 score "4.4" assertion.
- 908e35a7-8fb8-42d0-8b87-49dff30a0aea score "4.2" assertion.
- 79f2068e-fb81-4e9e-8fb1-7c38e7ee94e0 score "3.1" assertion.
- 287e6f0d-fcd9-4e6f-8e4a-ab34f442573a score "4.1" assertion.
- 8b39896f-7dc5-44ea-9203-567178437eef score "11.1" assertion.
- f9d77fd3-14a8-4a03-a85a-0a62473dbff1 score "11.1" assertion.
- 676a7fdc-a358-4212-ab1e-b3bde19bcd73 score "20.8" assertion.
- 461dc6f0-a899-472c-bb3c-c8eb749a40fa score "16.2" assertion.
- 3ac1396a-d055-4660-8fc4-6319f4434ed2 score "18.9" assertion.