Matches in Nanopublications for { ?s ?p ?o <https://w3id.org/np/RA4YcrlExyD8Py0jQsVpKTsyiRmjDDqViUXRs4AI_iLaw/assertion>. }
- c019b3ba-6789-4d37-9e1a-66cf2c50662c type community assertion.
- 8206e3e8-6b60-4df0-bc9e-42e0f181ce6f type TimeReference assertion.
- 97c16862-81da-4788-8741-b6575430b331 type Polygon assertion.
- 01xtthb56 type Agent assertion.
- mailto:acoca@turing.ac.uk type Agent assertion.
- mailto:service-account-enrichment type Agent assertion.
- tom-andersson type Agent assertion.
- nbarlowATI type Agent assertion.
- mailto:annefou@geo.uio.no type Agent assertion.
- 00vn06n10 type Agent assertion.
- 0000-0002-1784-2920 type Agent assertion.
- 0000-0002-8763-1643 type Agent assertion.
- df6591e6-c326-4d28-92fb-cb9d59786ac7 mainEntity "Jupyter Notebook" assertion.
- df6591e6-c326-4d28-92fb-cb9d59786ac7 wasDerivedFrom 911b0247-5b28-4993-894e-aff28828e643 assertion.
- 2919 description "" assertion.
- 3949 description "" assertion.
- environment.yml description "Conda environment when user want to have the same libraries installed without concerns of package versions" assertion.
- s41467-021-25257-4 description "Related publication of the modelling presented in the Jupyter notebook" assertion.
- conda-osx-64.lock description "Lock conda file for osx-64 OS of the Jupyter notebook hosted by the Environmental Data Science Book" assertion.
- conda-linux-64.lock description "Lock conda file for linux-64 OS of the Jupyter notebook hosted by the Environmental Data Science Book" assertion.
- 32e083d2-895a-4261-9f46-58b02a560519 description "Image showing interactive plot of IceNet seasonal forecasts of Artic sea ice according to four lead times and months in 2020" assertion.
- zenodo.5516869 description "Contains input Dataset for IceNet's demo notebook used in the Jupyter notebook of Sea ice forecasting using IceNet" assertion.
- df6591e6-c326-4d28-92fb-cb9d59786ac7 description "The research object refers to the Sea ice forecasting using IceNet notebook published in the Environmental Data Science book. Modelling approach IceNet is a probabilistic, deep learning sea ice forecasting system. The model, an ensemble of U-Net networks, learns how sea ice changes from climate simulations and observational data to forecast up to 6 months of monthly-averaged sea ice concentration maps at 25 km resolution. IceNet advances the range of accurate sea ice forecasts, outperforming a state-of-the-art dynamical model in seasonal forecasts of summer sea ice, particularly for extreme sea ice events. IceNet was implemented in Python 3.7 using TensorFlow v2.2.0. Further details can be found in the Nature Communications paper Seasonal Arctic sea ice forecasting with probabilistic deep learning." assertion.
- polar-modelling-icenet.html description "Rendered version for the original notebook. It has been used as input for this Research Object." assertion.
- 71820e7d-c628-4e32-969f-464b7efb187c description "Contains input Forecasts, neural networks, and results from the paper: 'Seasonal Arctic sea ice forecasting with probabilistic deep learning' used in the Jupyter notebook of Sea ice forecasting using IceNet." assertion.
- zenodo.6410246 description "Contains outputs, (table and figures), generated in the Jupyter notebook of Sea ice forecasting using IceNet." assertion.
- 714c9088-075f-43fb-94e0-b397eb195343 description "Bibliographic Research Object created by Jean Iaquinta on sea-ice forecasting and navigability in the Arctic." assertion.
- a8c3bc47-707e-4305-8dad-9ca3cbdbb0cc description "This Jupyter notebook is the one used for developing while the GitHub repository may contain a slightly older version (but working version e.g. fully tested). This notebook is shared while working on it and may contain errors." assertion.
- polar-modelling-icenet.ipynb description "Jupyter Notebook hosted by the Environmental Data Science Book and exemplifying the use of IceNet, a probabilistic deep learning algorithm to compute seasonal sea-ice forecasts over the Arctic." assertion.
- 4c314f75-9979-4a66-a473-a999880d6347 description "Seasonal sea ice forecast for September 2020 (leadtime=3)" assertion.
- df6591e6-c326-4d28-92fb-cb9d59786ac7 contentLocation a05908b4-ed63-422a-ac64-377a1c83c316 assertion.
- df6591e6-c326-4d28-92fb-cb9d59786ac7 contentLocation 470332b9-d423-4e01-8fbb-125838aab9cd assertion.
- 4c314f75-9979-4a66-a473-a999880d6347 contentSize "225392" assertion.
- df6591e6-c326-4d28-92fb-cb9d59786ac7 contentSize "949581" assertion.
- a8c3bc47-707e-4305-8dad-9ca3cbdbb0cc contentSize "988209" assertion.
- df6591e6-c326-4d28-92fb-cb9d59786ac7 contributor tom-andersson assertion.
- df6591e6-c326-4d28-92fb-cb9d59786ac7 contributor nbarlowATI assertion.
- df6591e6-c326-4d28-92fb-cb9d59786ac7 dateCreated "2022-12-02 12:25:08.853392+00:00" assertion.
- a8c3bc47-707e-4305-8dad-9ca3cbdbb0cc dateCreated "2022-12-02 12:44:01.180791+00:00" assertion.
- s41467-021-25257-4 dateCreated "2022-12-05 17:47:54.631415+00:00" assertion.
- zenodo.5516869 dateCreated "2022-12-05 17:48:47.659880+00:00" assertion.
- 71820e7d-c628-4e32-969f-464b7efb187c dateCreated "2022-12-05 17:51:37.848555+00:00" assertion.
- zenodo.6410246 dateCreated "2022-12-05 18:07:40.284577+00:00" assertion.
- environment.yml dateCreated "2022-12-05 18:10:51.731266+00:00" assertion.
- conda-linux-64.lock dateCreated "2022-12-05 18:12:11.453372+00:00" assertion.
- conda-osx-64.lock dateCreated "2022-12-05 18:13:17.122906+00:00" assertion.
- polar-modelling-icenet.ipynb dateCreated "2022-12-05 18:16:31.233833+00:00" assertion.
- 4c314f75-9979-4a66-a473-a999880d6347 dateCreated "2022-12-05 18:27:24.719979+00:00" assertion.
- polar-modelling-icenet.html dateCreated "2022-12-05 18:30:59.166927+00:00" assertion.
- 714c9088-075f-43fb-94e0-b397eb195343 dateCreated "2022-12-05 18:32:01.000677+00:00" assertion.
- a05908b4-ed63-422a-ac64-377a1c83c316 geo cbfcb926-8609-4640-bded-bc511b39121b assertion.
- 470332b9-d423-4e01-8fbb-125838aab9cd geo d95a7c61-ea78-4aed-b367-a4768e06cc03 assertion.
- df6591e6-c326-4d28-92fb-cb9d59786ac7 hasGeometry e5dcf1c6-b9e4-4308-87c6-89bf0d6d6e7b assertion.
- polar-modelling-icenet.ipynb softwareRequirements 9227c46b-dad6-40ae-a674-2730f7abac6d assertion.
- a8c3bc47-707e-4305-8dad-9ca3cbdbb0cc softwareRequirements 9227c46b-dad6-40ae-a674-2730f7abac6d assertion.
- df6591e6-c326-4d28-92fb-cb9d59786ac7 creation_mode "MANUAL" assertion.
- 0000-0002-1784-2920 orcid "0000-0002-1784-2920" assertion.
- 0000-0002-8763-1643 orcid "0000-0002-8763-1643" assertion.
- df6591e6-c326-4d28-92fb-cb9d59786ac7 cite-as "Alejandro Coca-Castro, Anne Fouilloux, Jean Iaquinta, Tom Andersson, and Nick Barlow. "Understanding Sea-Ice and the importance of accurate seasonal forecasts." ROHub. Dec 02 ,2022. https://w3id.org/ro-id/df6591e6-c326-4d28-92fb-cb9d59786ac7." assertion.
- 1db648fe-5369-4e63-8b1e-2254e0697ec3 normScore "100.0" assertion.
- 507d24bb-452d-411d-88b6-2d24b4e7584e normScore "100.0" assertion.
- 531870a3-aec9-46a6-82e0-2658caffdd5f normScore "100.0" assertion.
- a77b45dd-d91e-44df-9449-af41b6fe88c4 normScore "100.0" assertion.
- f6e0169a-e9a5-43c5-b68b-0116389cd8f0 normScore "10.050251256281406" assertion.
- 71ee99c6-793e-4ee6-bda2-8acb9ff1f677 normScore "11.97301854974705" assertion.
- 7703021f-9fed-421a-8be9-0273fdf806bc normScore "16.69477234401349" assertion.
- 09aa26ba-4e71-48e7-ba47-2abb1bfbc09d normScore "17.587939698492463" assertion.
- 53700f22-7d3c-42ce-81a9-2c46c79da2d9 normScore "21.58516020236088" assertion.
- 156e816b-1893-47ae-9b5b-23ad1226f759 normScore "23.48703170028818" assertion.
- 8a58eca3-9e80-4293-bf3c-3a9d0f41fefc normScore "23.618090452261306" assertion.
- 51649bc0-eb33-4022-9e49-1a4d4ea59695 normScore "23.777403035413155" assertion.
- 7f55fa69-bc7e-42cd-9640-7c2cbb364330 normScore "23.785594639865995" assertion.
- 5e22e259-287a-4b5e-ac43-1191c7c18d27 normScore "25.96964586846543" assertion.
- 2001b98b-87ef-4138-bfb6-46103954de72 normScore "27.392739273927397" assertion.
- de5c0e71-4a89-4596-b24e-4140f6c4c8e4 normScore "32.01320132013201" assertion.
- 2ed8ef64-3911-4bea-a4e8-cea391ede085 normScore "35.30259365994236" assertion.
- d562adfd-0935-42e3-aa51-a8feffc28505 normScore "41.21037463976945" assertion.
- 2f239cb8-fad8-47ea-8157-70b6fa502259 normScore "46.15384615384616" assertion.
- 199233f7-63e4-4bb0-95d1-2ef78843adbc normScore "5.445544554455445" assertion.
- 5d825213-4e14-4fa1-b274-4f439c17e4ef normScore "53.846153846153854" assertion.
- 953ceb4d-0d1d-4115-9a41-340cc294f6e7 normScore "6.600660066006601" assertion.
- f276f817-f132-4c3d-8c02-c8b8a0fdfec5 normScore "6.600660066006601" assertion.
- 222a1643-2096-43af-b938-c21e89832afb normScore "6.765676567656764" assertion.
- 3b39a47a-3f2b-4f3c-a94c-fed36053b2b0 normScore "6.765676567656764" assertion.
- 11045529-ff22-454f-8b8e-51c9e41a11b2 normScore "7.202680067001674" assertion.
- 88fb1cb1-7fd7-4e03-bbae-b78eebb10438 normScore "7.872696817420435" assertion.
- d79065ae-38fc-4527-bd52-8c4f2146c5fe normScore "8.415841584158414" assertion.
- b32d8942-d0ce-4572-b87d-0bc63f0a93a7 normScore "9.882747068676716" assertion.
- 96455797-7bb9-4b63-8d51-85e54ad36e9b path "Weather" assertion.
- 02d0825b-57ee-429f-a688-e2418a0eb987 path "Arts, culture and entertainment/Arts and entertainment/Literature" assertion.
- 32a6f532-5473-4c2a-9fdd-e4acdd7ff0b4 path "Economy, business and finance/Economic sector/Media/Book industry" assertion.
- 8228a525-012d-471c-a2b7-cfda74e7dcac path "Weather/Weather forecast" assertion.
- 6e80d664-db5c-47c6-8fb6-0ff7602db0ff path "Science and technology/Social sciences/Philosophy" assertion.
- 2f239cb8-fad8-47ea-8157-70b6fa502259 score "0.6" assertion.
- 51649bc0-eb33-4022-9e49-1a4d4ea59695 score "14.1" assertion.
- 8a58eca3-9e80-4293-bf3c-3a9d0f41fefc score "14.1" assertion.
- 09aa26ba-4e71-48e7-ba47-2abb1bfbc09d score "10.5" assertion.
- 953ceb4d-0d1d-4115-9a41-340cc294f6e7 score "4.0" assertion.
- f276f817-f132-4c3d-8c02-c8b8a0fdfec5 score "4.0" assertion.
- 11045529-ff22-454f-8b8e-51c9e41a11b2 score "4.3" assertion.